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Bacterial infections traditionally have not been considered major causes of cancer. Recently, however, bacteria have been linked to cancer by two
mechanisms: induction of chronic inflammation and production of carcinogenic bacterial metabolites. The most specific example of the
inflammatory mechanism of carcinogenesis is Helicobacter pylori infection. H. pylori has been epidemiologically linked to adenocarcinoma of the
distal stomach by its propensity to cause lifelong inflammation. This inflammation is in turn thought to cause cancer by inducing cell proliferation and
production of mutagenic free radicals and N-nitroso compounds. H. pylori is the first bacterium to be termed a definite cause of cancer in humans by
the International Agency for Research on Cancer. Mutagenic bacterial metabolites are also suspected to increase risk for cancer. This model is best
exemplified in colon cancer. Bile salt metabolites increase colonic cell proliferation. Exogenous compounds such as rutin may be metabolized into
mutagens by resident colonic flora. Moreover, Bacteroides species can produce fecapentaenes, potent in vitro mutagens, in relatively high
concentrations. In vivo data on human carcinogenesis by bacterial metabolites, however, are inconsistent. Local bacterial infections may also
predispose to nonnodal lymphomas, although the mechanisms for this are unknown. Gastric lymphomas and immunoproliferative small intestinal
disease have been most strongly linked to underlying bacterial infection. Because bacterial infections can be cured with antibiotics, identification of
bacterial causes of malignancy could have important implications for cancer prevention. - Environ Health Perspect 1 03(Suppl 8):263-268 (1995)
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Introduction
A substantial number of bacterial pathogens
have been putatively linked to cancer. As
early as 1772, Mycobacterium tuberculosis
was thought to cause malignancy (1). It
was observed that bronchogenic carcinomas
frequently appeared in areas of pulmonary
scarring, presumably from tuberculosis.
Persons with lung cancer also were noted
to have active tuberculosis more frequently
than the general population. Like many

hypotheses attributing cancer to specific
infectious agents, however, the tuber-
culosis-cancer theory did not stand the test

of time. Most bronchogenic carcinomas in
persons with tuberculosis do not occur at

scar sites but elsewhere in the lung.
Furthermore, observed scars at tumor

sites now appear to be the result of the
malignancy rather than the cause. Any
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link between active tuberculosis and
malignancy is currently ascribed to reacti-
vation of infection in immunocompro-
mised cancer patients rather than to a
cause-and-effect relationship between
infection and neoplasm (2-4).

Despite this early misstep, bacterial
theories for carcinogenesis continue to be
promulgated (5). Now, however, rather
than directly attributing cancer to specific
organisms, attention has focused on non-
specific mechanisms of carcinogenesis.
Two such mechanisms are induction of
inflammation, and production of muta-
genic compounds by bacterial metabolism.
The first mechanism is best exemplified by
Helicobacter pylori infection and gastric
cancer. Colon cancer provides a model for
the second of these mechanisms. Yet a
third mechanism, that for lymphomas, has
yet to be credibly modeled.

Bacteria, Inflammation, and
Cancer: the Helicobacterpylori
Model
Infections have been nonspecifically tied to
malignancy through their ability to cause
chronic inflammation. Among the chronic
inflammatory processes linked to cancer are
parasitic infections [e.g., Schistosoma
haematobium and Opisthorchis viverrini
(6,7)] and viruses [hepatitis B (8)]. In gen-
eral, these infections cause cancer in direct
proportion to their chronicity; the longer
the inflammatory process persists, the more
likely malignancy is to develop (7,8).
Among bacterial inflammatory processes,

chronic osteomyelitis was the first to be
convincingly associated with cancer in
humans. Constant irritation of a draining
sinus tract by inflammatory exudates of the
underlying bone predisposes the host to
carcinoma of the skin, regardless of the
specific bacterial pathogen involved (9).
Fortunately, in the era of antibiotics
chronic osteomyelitis contributes a vanish-
ingly small number of cases to the cancer
registry. A similar mechanism has been
proposed for bladder cancer in persons
with recurrent or persistent cystitis (10,11).

Currently, a popular model for bacterial
carcinogenesis is that of Helicobacter pylori
infection and gastric adenocarcinoma. H.
pylori is a Gram-negative rod that lives in a
neutral pH niche between the mucus layer
of the stomach and the gastric epithelium.
Although H. pylori can be found lining the
mucus layer adjacent to ectopic gastric tis-
sue (e.g., in Meckel's diverticula), it is never
found remote from gastric epithelium and
does not invade tissue; it neither enters
epithelial cells nor penetrates the basement
membrane. Despite this lack of invasion,
H. pylori infection is invariably associated
with inflammation (12,13). Once estab-
lished, H. pylori infection and its associated
inflammation are thought to last for
decades if not a lifetime (14). At least 50%
of the world's population harbors the
organism (14).

Recently, H. pylori was declared by the
International Agency for Research on
Cancer (IARC) to be a Group 1 carcino-
gen, a definite cause of human cancer (7).
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Support for this decision came principally
from pathologic studies of the natural his-
tory of gastric adenocarcinoma and epi-
demiologic studies statistically linking H.
pylori to malignancy.

Chronic superficial gastritis has long
been thought to be a precursor lesion to
gastric adenocarcinoma (15,16). Even in
the absence of more advanced preneoplas-
tic lesions, superficial gastritis increases
cancer risk 2-fold (17). In approximately 3
to 5% of persons per year, superficial gas-
tritis progresses to chronic atrophic gastri-
tis, a more advanced cancer precursor
lesion (18-20). With extensive atrophy,
cancer risk increases up to 9-fold (17). As
atrophy worsens, patches of intestinal
metaplasia arise and the gastric epithelium
transforms to either small or large bowel
morphology. Cancer ensues thereafter.

Since H. pylori causes the vast majority
of superficial gastritis, it can be deduced
from the data above that H. pylori is a
likely risk factor for malignancy and
increases cancer risk at least 2-fold. The
role of H. pylori in the development of
chronic atrophic gastritis and intestinal
metaplasia is unclear. Atrophic gastritis and
intestinal metaplasia are inhospitable to H.
pylori, and biopsies taken from these areas
yield no organisms. In spite of this, H.
pylori often is identified in nonatrophic
locations of the same stomach (21).
Moreover, in most persons with atrophy or
intestinal metaplasia, anti-H. pylori IgG is
found in serologic assays, suggesting smol-
dering infection (22,23). In support of a
causal role, one study has suggested that
cytotoxin-producing strains of H. pylori are
more common in persons with chronic
atrophic gastritis than in persons with only
superficial gastritis without atrophy (24).

An animal system to confirm the H.
pylori cancer model has yet to be estab-
lished. Thus, epidemiologic studies provide
the strongest evidence for the link between
H. pylori and cancer. Correlations between
H. pylori prevalence and gastric cancer
incidence reveal both geographic and
temporal parallels. In two of the largest
ecologic studies, Forman et al. found signi-
ficant correlations between H. pylori sero-
prevalence and gastric cancer rates among
49 rural Chinese counties and 17 nations
worldwide (25,26). Other investigators
observed that the prevalence of H. pylori
and/or superficial gastritis has declined
over time concomitant with the decrease in
gastric cancer incidence (27-29). Smaller
ecological studies yield less consistent
results (23,30,31). Similarly, while some

case-control studies of H. pylori in gastric
cancer have shown significant associations
between infection and malignancy (32-35),
others have not (36-40).

The most convincing data implicating
H. pylori as a cause of cancer are four
nested case-control studies from Hawaii,
California, Great Britain, and Taiwan
(41-44). In the first three studies (mean
follow-up 13, 14, and 6 years, respec-
tively), serologic evidence of H. pylori
infection increased risk of later developing
gastric cancer between 2.8- and 6-fold
(41-43). The fourth nested case-control
study also identified an elevated risk of
cancer (odds ratio = 1.6), but the finding
was not statistically significant (44). This
last study was hampered, however, by a
small number of cases (n = 29) and short
follow-up period (mean = 3 years). Overall,
the association between H. pylori and
cancer appeared to be restricted to tumors
distal to the gastric cardia (41,43).
A combined analysis of three nested

case-control studies showed the strongest
association between infection and cancer
(odds ratio = 8.7) when the interval
between serum collection and cancer diag-
nosis was longer than 15 years (45). When
serum was drawn more proximate to the
time cancer occurred, the relative risk esti-
mate was considerably lower (odds
ratio = 2.1). This has been observed inde-
pendently by other investigators (46) and
suggests that antibody titers, and perhaps
the presence of infection itself, might
diminish as preneoplastic lesions progress
toward cancer.

The epidemiologic and pathologic asso-
ciations between H. pylori and cancer
would have little meaning were infection
not a biologically plausible cancer risk
factor. H. pylori infection, like other infec-
tious causes of chronic inflammation, theo-
retically fits the role of a promoter in the
multistage model of carcinogenesis (6).
Promoters select for clonal expansion of
cells either by causing alteration in increas-
ing proliferation and gene expression or by
causing changes in terminal cell differentia-
tion (47,48). H. pylori infection causes
increased cell proliferation (49,50).
Eradication of H. pylori decreases cell pro-
liferation, probably because of decreased
inflammation rather than loss of the organ-
ism itself (50-52). Although H. pylori-
related hyperproliferation is not yet
understood, possible causes are direct dam-
age to mucosal cells by H. pylori-related fac-
tors (i.e., ammonia), trophic effects of
increased gastrin production, or indirect

damage to the epithelium by the inflamma-
tory response (49,53-57). Cell proliferation
in turn increases risk for DNA replication
error and predisposes mucosal cells to
transformation by dietary or endogenous
mutagens (58,59).

Other elements of inflammation also
can be seen as tumor-promoting processes
(48,58). Inflammatory cells increase con-
version of nitrates to nitrites, enhancing the
likelihood of N-nitrosamine formation (6).
This may explain the epidemiologic obser-
vation that in some populations high
dietary nitrates increase gastric cancer risk
(60). Moreover, activated macrophages
produce nitrite, nitrate, and nitrosating
agents (61). When macrophages are cul-
tured with appropriate amines, N-nitroso
compounds are formed. Free radicals pro-
duced by the inflammatory response, e.g.,
0- and superoxide, alter the structure and
function of lipids, proteins, and DNA caus-
ing changes in cell metabolism and gene
expression. Excess production of reactive
oxygen species has been noted in human
mucosal tissue infected with H. pylori
(62,63). Thus, without being directly
genotoxic, H. pylori can contribute to the
development of uncontrolled cell growth.

Because H. pylori is curable with a
short course of antibiotics, it is tantalizing
to speculate that treatment of infection or
creation of a vaccine could prevent gastric
cancer. Unfortunately, studies proving this
almost certainly will be difficult or impos-
sible to perform. Very large cohorts would
be needed with many years of follow-up.
Intermediate markers for cancer risk are
easier to evaluate, and the effects of ther-
apy on advanced precursor lesions are cur-
rently being studied. Pending these results,
a preliminary cost-effectiveness analysis
suggests that even if treatment prevents
only 20% of infection-related cancers,
antibiotic therapy could be a reasonable
approach to disease prevention in high risk
groups such as Japanese Americans and
African Americans (64).

Colon Cancer and Bacterial
Colonization of the Intestine
For obvious reasons, research into the eti-
ology of sporadic colon cancer has focused
on dietary influences (65). After decades of
study, several trends are evident: fats are
consistently risk factors for colon cancer
and fiber is consistently protective. Mecha-
nisms for these associations are not yet
clear. One widely held theory, however, is
that risks attributable to foods are medi-
ated by bacterial actions in the intestine.
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The intestine harbors an enormous
variety of bacterial flora, with colonization
becoming more dense progressing from
pylorus to distal colon. In the proximal
duodenum, few organisms survive. In the
colon, on the other hand, it is estimated
that 1014 organisms of hundreds of differ-
ent species (the vast majority anaerobes) vie
for space and nutrients. Despite the wide
diversity of resident organisms, differences
in composition of gut flora within human
populations have been difficult to substan-
tiate, even in persons with very different
diets (66).

Bacteria are thought to have several
indirect carcinogenic actions in the gut.
First, they deconjugate and reduce bile
acids. While most bile acids are absorbed
in the small intestine, a small percent will
pass into the colon. In vitro, it has been
shown that bacterial species within the
colon can deconjugate the 7a-hydroxyl
groups from bile acids to produce cytotoxic
7ax-dehydroxylating bile acids (deoxy-
cholate and lithocholate) (67). These com-
pounds are reported to promote cell
proliferation (68) and growth of adenomas
(69). This in turn enhances carcinogenesis
by exogenous or endogenous mutagens.
Thus, copious secretion of bile acids fol-
lowing fatty meals would increase risk of
colon cancer in persons with high fat diets.

Bacteria are also thought to activate
exogenous mutagen precursors. Examples
observed in vitro and in vivo are: hydrolysis
of rutin to quercetin (a mutagenic aromatic
amine), hydrolysis of cycasin to methyl-
azoxymethanol (70), and hydrolysis of
glucuronide-conjugated polycyclic hydro-
carbons to their unconjugated, muta-
genic forms (71). Fecapentaenes, potent
mutagens synthesized by Bacteroides
species, are also found in relatively high
concentrations in human feces, although
their relationship to cancer is unproven
(72-74). Furthermore, bacteria ferment
polysaccharides and glycoproteins to
volatile fatty acids. These may increase dis-
tal colon cell proliferation by altering
membrane structure, although, again, in
vivo support for this is lacking (75,76).

Because of the many species of bacteria
in the gut (a considerable portion of which
remain unidentified), focusing on any one
organism as a cause of cancer is a daunting
task. It remains possible, however, that
specific bacterial species play more direct
roles in colon carcinogenesis. In murine
models, Citrobacterfreundii causes attaching
and effacing lesions of the large intestine
similar to those caused by enteropathogenic

Escherichia coli in humans (77). Animals
infected with Citrobacter freundii develop
colonic hyperplasia and when exposed to
exogenous mutagens, progress more rapidly
to malignancy than uninfected animals
(78,79). In humans, efforts have been
made to similarly identify specific organ-
isms that cause proliferation and/or malig-
nancy. For example, several cross-sectional
studies indicate that certain Clostridium
species are more common in colon cancer
patients than in other subjects, although a
causal relationship remains unproven
(80,81). In light of the Citrobacterfreundii
model, however, it is conceivable that
specific bacteria may induce the optimal
proliferative environment for mutagens to
induce their damage.

Unlike the H. pylori model outlined
above, there is little hope that antibacterial
strategies will play a role in colon cancer
prevention. Normal flora are a funda-
mental component of the human gastroin-
testinal tract. Since no specific species of
organism has been targeted as the colon
cancer culprit, no antimicrobial therapy or
vaccine can be explored. Until a specific
organism is pinpointed, cancer prevention
strategies can only focus on diet as it
influences bacterial pathogenesis.
Lymphomas
Circumstantially, bacteria appear to be
involved in pathogenesis of two types of
lymphomas: gastric lymphomas and
immunoproliferative small intestinal dis-
ease (IPSID). Although the stomach is not
a lymphoid organ, gastric lymphoma is the
most common extranodal lymphoma.
Approximately 20 to 30% of these tumors
arise from mucosal-associated lymphoid
tissue (MALT). MALT consists of orga-
nized lymphoid follicles in mucosal areas of
nonlymphoid organs such as the GI tract
and thyroid and salivary glands. Recently,
Isaacson showed that MALT can be the
nidus for B-cell neoplasms called MALT
lymphomas (82). These low-grade malig-
nancies are characterized by specific histo-
logic features: nonneoplastic lymphoid
follides, centrocytelike cells, lymphoepithe-
lial lesions, and plasma cell differentiation.

One line of research currently favors H.
pylori infection as a causal factor in both
MALT and non-MALT gastric lym-
phomas. Several facts favor this hypothesis.
First, gastric MALT is extraordinarily com-
mon in patients with H. pylori infection.
One pathologist has suggested that all
infected subjects will have MALT if the
pathologist diligently looks for it (83).

H. pylori is also common in subjects with
MALT lymphomas (84). Gastric MALT
lymphoma cells proliferate when cultured
in the presence of T-cells and H. pylori
antigens (85). In a mouse model of H.
frlis, lymphoid follicle formation was fol-
lowed by MALT-like tumors after several
years of sustained infection (86). More
remarkable still, gastric MALT and MALT
lymphomas remit coincident with cure of
H. pylori infection, although a nonspecific
response to antibiotics cannot be ruled out
(87,88). The only prospective epidemio-
logic study done in humans, however,
found that H. pylori infection increased
risk for all gastric lymphomas not just
MALT lymphomas (odds ratio = 6.3) (89).
This suggests that infection is driving the
proliferation of MALT cells and the pro-
gression of MALT to both MALT and
non-MALT lymphomas. Another hypothe-
sis is that MALT lymphoma reflects an
aberrant autoimmune response to chronic
infection (82,90).

The second bacterium-related lym-
phoma, IPSID, is an unusual malignancy
that occurs predominantly in young adults
of lower socioeconomic regions of the
southern and eastern Mediterranean region.
Commonly known as Mediterranean lym-
phoma, IPSID is a MALT-type lymphoma
that is almost invariably associated with
excessive production of a heavy chains
(91). Like gastric MALT lymphoma,
IPSID responds to antibiotic therapy.
When treated in the early stage, up to 40%
of tumors will completely regress with
antibiotic treatment (typically tetracycline)
(91-93). The precise reason for these
remissions remains unclear. One widely
held theory is that IPSID succeeds unremit-
ting bacterial stimulation of lymphocytes
(93). In particular, recurrent diarrheal
disease beginning in infancy has been
implicated as a stimulus for uncontrolled
lymphoproliferation. Bacterial overgrowth
of the small bowel is evident in some cases,
although no specific bacterium appears to
be more common than in controls (93).

Because nonnodal lymphomas are
rare, these diseases are difficult to study.
Furthermore, the variable pathologic classi-
fications of lymphomas makes consistency
among investigators difficult. Even the dis-
tinction between lymphoma and lympho-
proliferation often is problematic. Thus,
the true nature of the relationship between
bacteria and lymphomas remains obscure.
Whether the bacterial disease model can be
applied to other extranodal or non-MALT
lymphomas is unknown.
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Conclusions
One of the most intimate relationships of
man is that which he has with his own
microbial flora. While most exposures in life
are transient, the contact we have with
these microorganisms is constant and

unremitting. This symbiotic relationship is
taken for granted or, more commonly still,
thought to be beneficial. Even the term nor-
mal flora suggests benignity. Yet it is naive
to assume that our continuous interaction
with microbial flora is immaterial to our

long-term health. As new infectious causes
of malignancy continue to be uncovered, it
is increasingly apparent that dissection of
the complex interplay between man and
microbial flora is essential to understanding
the pathogenesis ofmany malignancies.
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